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1. Introduction and problem description
Quality control of part production is crucial in manufacturing. Whether the

produced part/detail passes the inspection or not depends on its particular usage
and the answer may differ from application to application. Furthermore, the
daily detail manufacture is usually huge and the quality inspection should be
fast. Therefore, in order to meet the needs of industry, the process must be as
automatic and as flexible as possible.

Sirma Group Holding JSC is one of the largest software groups in Southeast
Europe, with a proven track record since 1992. EngView Systems Jsc is a sub-
sidiary company for CAD/CAM software, which, among other tasks, deals with
quality control via scanning. More precisely, their team wants to enrich the soft-
ware of the scanner they sell on the market, so that the original CAD model of
the detail is “properly” compared to the scanner’s output of a given manufac-
tured specimen. The first object usually consists of a list of “CAD primitives”,
that are either line or arc segments, for which the two endpoints and the circle
center/radius (for arc segments) are given. The second object is a real-point
cloud, whose density depends on the scanner’s resolution. The two data sets
lie in different coordinate systems, thus the scanned data should be translated
and rotated in order to align with the CAD one. This “optimal” alignment is
the main purpose of our work. Once achieved, the objects’ comparison is user-
dependent, but typically point-wise displacements between the two data sets at
certain (again user-specified) points of interest (control points) are measured (see
Fig. 1). When those quantities are within the user-given range, the specimen
passes the quality inspection.

The optimal data alignment (a.k.a. Best-Fit problem) can be described as a
search for the best transformation matrix to transform input measured points
from their coordinate system into a CAD model coordinate system using a cri-
teria function for optimization. The best algorithmic solution should include the
following features:

1. Partial fit (only part of the object is scanned).

2. Different parts (these could also be measure points) can have their own
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Fig. 1. CAD vs. CAM comparison of an industrial detail. Green numbers pass the
quality inspection, while red ones do not

individual weights.

3. Only some of the three rotations and three translations can be applicable.

4. The algorithm can be applied on 2D or 3D data.

5. Preliminary assessment can be made if there are points that constitute
noise. If such points are detected, they should be filtered out.

6. In the ideal case, the algorithm’s input data – these are the data in the two
coordinate systems – can appear as points, as a mesh, or as a CAD model.

7. Optimization can take place by different optimization criteria: least squares,
minimum sum of deviations, mini-max, uniform deviations, minimum stan-
dard deviation, tolerance envelope, tolerance envelope mini-max.

8. The fit process should be able to accept also partially deformed parts. Even
if there are discrepancies between the CAD model and the input data, the
algorithm must be able to process them.

9. The computation needs to be fast and efficient.

10. An option could exist for multi-core, parallel computation.

In the discrete setting (pixel grid), a CAD/CAM Best-Fit algorithm for the
corresponding raster images has been proposed and investigated in [1]. Here,
because of the point-wise-distance criterion, the EngView Systems representative
insisted on us working in the continuous setting (vector format), where each point
is represented via its coordinates in Rn, n = 2, 3. In [2] an algorithm that checks
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if two unlabeled configurations of points in Rn are an orthogonal transformation
of one another is proposed. If they are, the transformation matrix is explicitly
computed. This algorithm is also modified for noisy measurements (as is the case
with our scanned data), but it assumes that the two point clouds are of the same
cardinality and are one-to-one. The latter is not applicable to our problem, since
the scanned data are randomized, thus we cannot extract their corresponding
point cloud from the CAD model.

2. Our approach
The main difficulty in solving the given Best-Fit problem arises from the diver-

sity in the data representation of the CAD model and the vectorized scanned im-
age (CAM data). On the one hand, we have the CAD primitives (fully structured,
continuous data), where only few points are specified (namely, the endpoints of
the primitives). On the other hand, we have the real-point cloud, derived by
the scanner, where the whole information is incorporated in point coordinates
and no connectivity among the points is known (thus, completely unstructured,
discrete data). Furthermore, the randomness of the vectorization implies that
the probability for the input point cloud to contain the corresponding image of
any of the CAD endpoints is zero.

Since structuring a point cloud is an NP-hard problem, we choose to discretize
the CAD model and to apply techniques from Principal Component Analysis
(PCA) on the two point clouds. In theory, the input data should be uniformly
sampled from the specimen surface with step-size, depending on the scanner’s
resolution. Hence, we also uniformly sample our CAD data with respect to the
arc-length parameterization of the primitives. We use a standard AutoCAD func-
tion for that. Then, for each of the discrete data sets, we compute their energy
ellipse/ellipsoid (in 2D/3D respectively). Those ellipses define local frames, cen-
tered at the corresponding data barycenters, with axes along the directions of
minimal and maximal energy. The computation is based on least-squares ap-
proach, that leads to quadratic constrained optimization problem on the unit
circle. The latter is equivalent to finding the Jordan decomposition of a n × n
Gramian matrix, n = 2, 3, which is an easy, fast, and numerically stable proce-
dure. In signal processing, this technique is known as the Karhunen-Loève Trans-
form [3] and the total mean-square error is proven to be minimized in this local
(energy) basis. Finally, we map the CAM local frame onto the CAD-discretized
local frame, choosing the “correct” orientation (in 2D we have 4 different options
if only flips along the coordinate axes are allowed, and 8 - if we consider mir-
roring, as well) and declare the corresponding transformation matrix as optimal.
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When the scanned data is denoised and uniformly sampled, while the manufac-
tured part/detail specimen is without any defects, the transformed CAM data
cloud should be perfectly contained within the continuous CAD model. Thus,
the transformation matrix is optimal with respect to any optimization criteria.
In practice, however, the scanned data is noisy, and the EngView Systems’ team
performs a denoising procedure, where untrustworthy data is erased. This, to-
gether with the possible defects of the specimen, affects the CAM local frame
(mainly the coordinate axes, while the origin remains quite stable) and further
“local” modifications of the derived transformation matrix are needed in order
to optimize it. The latter is a subject of future work and it will be discussed in
the corresponding section.

2.1. Karhunen-Loève transform

Fig. 2. Linear regression analysis. The picture is taken from Wikipedia

For a given set of N points M := {(xi, yi)}Ni=1, we look for the line in R2

that minimizes the sum of the squared Euclidean distances from the point set
to it. In statistics this procedure is known as Linear regression, see Fig. 2 (the
picture is taken from https://en.wikipedia.org/wiki/Linear_regression),
while in mathematics – as Least Squares Problem. It is easy to show that this
optimal line passes through the barycenter (xG, yG) of M. Thus, we use the
normal representation

ℓ : A(x− xG) +B(y − yG) = 0

of the former, where (A,B)T is a unit normal vector with respect to ℓ. We want

65



The 2D/3D Best-Fit Problem ESGI’113

to solve the following minimization problem

(1) argmin
A,B

N
∑

i=1

(

A(xi − xG) +B(yi − yG)
)2

︸ ︷︷ ︸

F (A,B)

s.t. A2 +B2 = 1,

which is equivalent to quadratic optimization on the unit circle:

(2) argmin
A,B

〈(

⟨x, x⟩ ⟨x, y⟩
⟨y, x⟩ ⟨y, y⟩

)(

A
B

)

,

(

A
B

)〉

s.t. A2 +B2 = 1.

Here, x = (x1 − xG, . . . , xN − xG)T , y = (y1 − yG, . . . , yN − yG)T , and ⟨·, ·⟩ is the
standard scalar product in RN . The matrix

M :=

(

⟨x, x⟩ ⟨x, y⟩
⟨y, x⟩ ⟨y, y⟩

)

is Gramian, thus symmetric and positive definite (unlessM is collinear). Problem
(2) is classical. The range of the cost function F is [λ1,λ2], where 0 ≤ λ1 ≤ λ2

are the eigenvalues of M, and the minimizer is given via

(3)

(

Ā
B̄

)

= ±v1, Mv1 = λ1v1, ∥v1∥2 = 1.

Note that the minimizer is unique up to sign, so additional “orientation” issues
need to be considered afterwards.

In this setup, the Karhunen-Loève transformKL : R2 → R2 is simply a change
of basis:

(4) KL

(

x
y

)

=

(

v1,x v2,x
v1,y v2,y

)

︸ ︷︷ ︸

TM

(

x+ xG
y + yG

)

.

The vector v2 is a normalized eigenvector for M w.r.t. λ2, and it describes the
direction of minimal energy of M. On the other hand v1 describes the direction
of maximal energy of M. In other words, the local frame (G, v1, v2) places M
along the y-axis, it is quite natural, and the most stable invariant of M w.r.t.
Gaussian noise.

2.2. KL-transform-based Algorithm

We propose and implement in MatLab the following algorithm in Rn, n = 2, 3:
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Algorithm 2.1 (2D/3D Karhunen-Loève transformation matrix).
Input: cad data, sc data Output: Transformation matrix T and translation

vector d⃗

1. Compute the barycenters GCAD and Gsc of cad data and sc data.

2. Compute the shift d⃗ = GCAD −Gsc.

3. Compute TCAD and Tsc as in Section 2.1.

4. Compute the orthonormal matrix T = TCADT T
sc .

5. Derive sc data aligned from sc data via translation by d⃗ and rotation

by T .

6. FUZZ the cad data.

7. Axes orientation check and T modifications, if necessary.

As already mentioned, the input cad data is a point cloud, uniformly sampled
from the CAD model via standard AutoCAD software. The barycenters are
computed directly via coordinate-wise averaging. Since both TCAD and Tsc are
orthogonal, so is T and it rotates the CAM local frame in order to align it with
the CAD one, i.e.,

T : vcsi → vCAD
i , i = 1, . . . , n.

Since all the basis vectors are unique up to a sign, we have to choose the
correct axes orientations for optimal data matching. The latter means that we
need to consider all possible “axes flips” of the CAM data, leading to 2n different
choices, and take the one that best fits the CAD data. In 2D, those flips result
in left multiplications of T by

Tx :=

(

1 0
0 −1

)

, Ty :=

(

−1 0
0 1

)

, Txy :=

(

−1 0
0 −1

)

,

respectively. In order to quantitatively compare the different orientations, we
use another standard AutoCAD function, namely FUZZ distance. This works
as follows: around each CAD primitive, we draw an envelope of certain width ε
(the width may vary from primitive to primitive, but for the moment it suffices
to consider it a global parameter) and AutoCAD orthogonally projects all points
within the envelope on the primitive. (A non-scientific explanation would be,
that we thicken the lines of the CAD model.) We choose an appropriate ε, and
for each of the orientations of sc data aligned we count the number of points
outside of the CAD model ε-envelope. The optimal orientation is the one that
minimizes this number.
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3. 2D Numerical examples

We consider two numerical examples (see Fig. 3). All the CAD/CAM data
are provided by EngView Systems. In both cases the CAD and CAM coordinate
systems are a priori aligned (Fig. 4), which does not affect at all the Karhunen-
Loève Transform and the performance of Algorithm 2.1, but allows us to compare
our output with the optimal transform (which is the identity). We uniformly
sample the first CAD model (Fig. 3 Left) using 1323 points and the second CAD
model (Fig. 3 Right) using 1218 points. The scanned data for the first example
consists of 399 points, while for the second – of 8206 points. Comparison of
CAD vs. CAM local bases is shown on Fig. 4. Comparisons between CAD and

Fig. 3. The CAD models of the 2 considered parts

Fig. 4. Point-cloud comparison for the details: Red(solid): (Fuzzed) CAD sample and
its KL frame. Black(circled): Scanned data and its KL frame. Blue dots: Barycenters

68



ESGI’113 The 2D/3D Best-Fit Problem

Fig. 5. Different local frame orientations for the first example

transformed CAM data w.r.t. Algorithm 2.1 are shown on top left on Fig. 5 and
Fig. 6, respectively. Both scanned specimens have no manufacturing defects.

For the first example we see (almost) perfect alignment of the two KL local
frames. This is due to the good specifics of both specimen and its scanning (no
defects and close-to-uniform CAM sample). Moreover, even for small ε, the fuzzy
CAD data incorporates almost all of the CAM points, making the orientation
check in step. 7 of the algorithm straightforward (see Fig. 5).

This is not the case with the second example. There, even though the CAM
sample is 20 times bigger than the one in the first example, some of the scanned
data was untrustworthy and erased during the denoising process that preceded
our work. This resulted into several CAD regions for which no scanning infor-
mation is available (see Fig. 4). The latter polarizes the CAM point sample and
affects its local axes. In turn, the outcome of Algorithm 2.1 is not the optimal
transformation matrix. Furthermore, the CAD model is almost a square, thus has
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Fig. 6. Different local frame orientations for the second example

plenty of symmetries and the range of the cost function F in (1) is small. Com-
bining the two problems, we witness a very hard orientation check (see Fig. 6).
For each of the axes flips and for small ε the fuzzed CAD data contains some por-
tions of the CAM points and misses the two “bumps”. Thus, the number of CAM
points outside the fuzzed region does not differ significantly among the different
orientations. In such a case, choosing the correct frame orientation is not secure,
and we increase ε until a clear winner appears, namely until the “bumps” are
captured by one of the candidates. The latter is indeed the correct orientation.

4. Future work
Algorithm 2.1 is just a preliminary step of the desired Best-Fit algorithm.

As seen from the numerical experiments, it provides satisfactory transformation
matrix only for non-deformed parts/details with uniformly sampled CAM data.
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Moreover, among the desired algorithmic properties, listed in the introduction, we
cover only points 4-5, because the Karhunen-Loève transform is applicable also
in 3D, and Least Squares estimates are maximum-likelihood ones of Gaussian
noise. Clearly, such an approach cannot deal with point 1. In order to address
the remaining issues, further modifications of T are necessary.

The biggest benefit of Algorithm 2.1 is that it structures M̄sc := T (sc data+
d⃗) in a sense that most of the scanned points away from the endpoints of CAD
primitives can now be assigned to their corresponding primitive! We assume
that the barycenters GCAD and Gsc are (almost) correct. This is witnessed in
both of the examples in Section 3. Moreover, Georgi Evtimov wrote a LISP
function, that computes the barycenter of the continuous CAD model, and when
compared to the barycenter of even random point samples (that still capture the
detail geometry) we saw that the latter approximates well the former. Therefore,
mainly the axes directions of the CAM local frame (but not its origin) are affected
by the quality of both the detail and its scanning, so we search for another rotation
matrix

Rθ =

(

cos θ sin θ
− sin θ cos θ

)

, θ ∈ (−π/2,π/2),

to deal with that. Finally, the optimal rotation matrix will be

Tfinal = RθT ,

while the best coordinate transform is
(

x
y

)

→ Tfinal

(

x+ dx
y + dy

)

.

Let Mi ⊂ M̄sc be the points that clearly belong to the CAD primitive Pi.
Then, we can break our Best-Fit problem into N smaller and simpler ones, where
N is the number of different CAD primitives in the model. Since the primitives
are either line or arc segments, there are only 2 types of optimization problems
that appear. Those N processes are independent and small-scale, thus they
can be computed in parallel (point 10) and very efficiently (point 9). Different
optimization criteria can be used (as long as the corresponding optimization
problem can be numerically solved on line and arc segments!), thus point 7 is
also covered. For each i = 1, . . . , N , given Mi and (uniform sample of) Pi, the
local Best-Fit problem will produce as output a rotation angle θi, i.e.,

(Mi, Pi)
Local BestF it
−−−−−−−−−→ θi, i = 1, . . . , N.
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The global angle θ can be a convex combination of the local ones

θ =
N
∑

i=1

ωiθi, ωi ≥ 0,
N
∑

i=1

ωi = 1,

which addresses point 2. We can project Tfinal onto any subgroup of SO(2)
(those, considered admissible by the user), which solves point 3.

Let us consider two different primitives Pi and Pj that are both line segments.
Assuming that Mi and Mj are indeed scanned samples of Pi and Pj , indepen-
dently of the optimization criteria the angles θi = ∠(ℓi, Pi) and θj = ∠(ℓj, Pj)
should be equal, unless the samples are noisy or the detail is defected. Here,
ℓi and ℓj are the optimal lines for Mi and Mj , respectively. Moreover, this
equality is not affected by the accuracy of the barycenter computations, because
the quantities are invariant under translation. Thus, the distribution of the set
{θi | Pi – line segment} provides us with information about defects and/or data
discrepancies (point 8).

When Pi is an arc segment, assigning the angle θi is not a priori clear. Further-
more, Best-Fit problems on circles are usually much more complicated than the
ones on lines. For example, even the Least-Squares fit, which is a linear problem
in the latter setting, has no closed form solution in the former one and there is no
direct algorithm for it (see [4]). However, in our case we have additional informa-
tion from the CAD model that we incorporate into the optimization problem as
constraints. In particular, the center Oi and the radius Ri of the arc Pi are given,
while the distance ri := |GCADOi| can be computed. Therefore, we search for a
point Ōi on the circle C(GCAD, ri) for which the circle C(Ōi, Ri) minimizes the
least-squares functional. In other words, we restricted a 3D optimization problem
(the unknowns are the coordinates of Ōi and the radius R̄i of the optimal circle)
to a 1D one, where the only unknown is the angle θi = ∠ŌiGCADOi. The re-
stricted problem remains nonlinear, but analyzing 1D functions is a much easier
task, that, at least numerically, can be efficiently performed.

The time frame, needed for the execution of such ambitious work plan, is far
beyond the one of the workshop. However, if EngView Systems are interested in
further collaboration, this might be an interesting and fruitful project for both
industry and science.
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